You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1835 lines
76 KiB
1835 lines
76 KiB
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import json
|
|
import plotly.graph_objects as go
|
|
import plotly.utils
|
|
from flask import Flask, render_template, request, jsonify
|
|
from flask_cors import CORS
|
|
import sys
|
|
import warnings
|
|
import datetime
|
|
import baostock as bs
|
|
import re
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
# Add project root directory to path
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
|
|
try:
|
|
from model import Kronos, KronosTokenizer, KronosPredictor
|
|
MODEL_AVAILABLE = True
|
|
except ImportError:
|
|
MODEL_AVAILABLE = False
|
|
print("Warning: Kronos model cannot be imported, will use simulated data for demonstration")
|
|
|
|
app = Flask(__name__)
|
|
CORS(app)
|
|
|
|
# Global variables to store models
|
|
tokenizer = None
|
|
model = None
|
|
predictor = None
|
|
|
|
# 获取webui目录的路径
|
|
WEBUI_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
# 获取项目根目录(webui的父目录)
|
|
BASE_DIR = os.path.dirname(WEBUI_DIR)
|
|
|
|
AVAILABLE_MODELS = {
|
|
'kronos-mini': {
|
|
'name': 'Kronos-mini',
|
|
'model_id': os.path.join(BASE_DIR, 'models', 'Kronos-mini'),
|
|
'tokenizer_id': os.path.join(BASE_DIR, 'models', 'Kronos-Tokenizer-base'),
|
|
'context_length': 2048,
|
|
'params': '4.1M',
|
|
'description': '轻量级模型,适合快速预测'
|
|
},
|
|
'kronos-small': {
|
|
'name': 'Kronos-small',
|
|
'model_id': os.path.join(BASE_DIR, 'models', 'NeoQuasarKronos-small'),
|
|
'tokenizer_id': os.path.join(BASE_DIR, 'models', 'Kronos-Tokenizer-base'),
|
|
'context_length': 512,
|
|
'params': '24.7M',
|
|
'description': '小型模型,平衡性能和速度'
|
|
},
|
|
'kronos-base': {
|
|
'name': 'Kronos-base',
|
|
'model_id': os.path.join(BASE_DIR, 'models', 'NeoQuasarKronos-base'),
|
|
'tokenizer_id': os.path.join(BASE_DIR, 'models', 'Kronos-Tokenizer-base'),
|
|
'context_length': 512,
|
|
'params': '102.3M',
|
|
'description': '基础模型,提供更好的预测质量'
|
|
}
|
|
}
|
|
|
|
# Available model configurations
|
|
# AVAILABLE_MODELS = {
|
|
# 'kronos-mini': {
|
|
# 'name': 'Kronos-mini',
|
|
# 'model_id': 'models/Kronos-mini', # 本地路径
|
|
# 'tokenizer_id': 'models/Kronos-Tokenizer-base', # 本地路径
|
|
# 'context_length': 2048,
|
|
# 'params': '4.1M',
|
|
# 'description': '轻量级模型,适合快速预测'
|
|
# },
|
|
# 'kronos-small': {
|
|
# 'name': 'Kronos-small',
|
|
# 'model_id': 'models/NeoQuasarKronos-small', # 本地路径
|
|
# 'tokenizer_id': 'models/Kronos-Tokenizer-base', # 本地路径
|
|
# 'context_length': 512,
|
|
# 'params': '24.7M',
|
|
# 'description': '小型模型,平衡性能和速度'
|
|
# },
|
|
# 'kronos-base': {
|
|
# 'name': 'Kronos-base',
|
|
# 'model_id': 'models/NeoQuasarKronos-base', # 本地路径
|
|
# 'tokenizer_id': 'models/Kronos-Tokenizer-base', # 本地路径
|
|
# 'context_length': 512,
|
|
# 'params': '102.3M',
|
|
# 'description': '基础模型,提供更好的预测质量'
|
|
# }
|
|
# }
|
|
|
|
def load_data_files():
|
|
"""Scan data directory and return available data files"""
|
|
data_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'data')
|
|
data_files = []
|
|
|
|
if os.path.exists(data_dir):
|
|
for file in os.listdir(data_dir):
|
|
if file.endswith(('.csv', '.feather')):
|
|
file_path = os.path.join(data_dir, file)
|
|
file_size = os.path.getsize(file_path)
|
|
data_files.append({
|
|
'name': file,
|
|
'path': file_path,
|
|
'size': f"{file_size / 1024:.1f} KB" if file_size < 1024*1024 else f"{file_size / (1024*1024):.1f} MB"
|
|
})
|
|
|
|
return data_files
|
|
|
|
|
|
def load_data_file(file_path):
|
|
"""Load data file"""
|
|
try:
|
|
if file_path.endswith('.csv'):
|
|
df = pd.read_csv(file_path)
|
|
elif file_path.endswith('.feather'):
|
|
df = pd.read_feather(file_path)
|
|
else:
|
|
return None, "Unsupported file format"
|
|
|
|
# Check required columns
|
|
required_cols = ['open', 'high', 'low', 'close']
|
|
if not all(col in df.columns for col in required_cols):
|
|
return None, f"Missing required columns: {required_cols}"
|
|
|
|
# Process timestamp column
|
|
if 'timestamps' in df.columns:
|
|
df['timestamps'] = pd.to_datetime(df['timestamps'])
|
|
elif 'timestamp' in df.columns:
|
|
df['timestamps'] = pd.to_datetime(df['timestamp'])
|
|
elif 'date' in df.columns:
|
|
# If column name is 'date', rename it to 'timestamps'
|
|
df['timestamps'] = pd.to_datetime(df['date'])
|
|
else:
|
|
# If no timestamp column exists, create one
|
|
df['timestamps'] = pd.date_range(start='2024-01-01', periods=len(df), freq='1H')
|
|
|
|
# Ensure numeric columns are numeric type
|
|
for col in ['open', 'high', 'low', 'close']:
|
|
df[col] = pd.to_numeric(df[col], errors='coerce')
|
|
|
|
# Process volume column (optional)
|
|
if 'volume' in df.columns:
|
|
df['volume'] = pd.to_numeric(df['volume'], errors='coerce')
|
|
|
|
# Process amount column (optional, but not used for prediction)
|
|
if 'amount' in df.columns:
|
|
df['amount'] = pd.to_numeric(df['amount'], errors='coerce')
|
|
|
|
# Remove rows containing NaN values
|
|
df = df.dropna()
|
|
|
|
return df, None
|
|
|
|
except Exception as e:
|
|
return None, f"Failed to load file: {str(e)}"
|
|
|
|
|
|
def save_prediction_results(file_path, prediction_type, prediction_results, actual_data, input_data, prediction_params):
|
|
"""Save prediction results to file"""
|
|
try:
|
|
# Create prediction results directory
|
|
results_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'prediction_results')
|
|
os.makedirs(results_dir, exist_ok=True)
|
|
|
|
# Generate filename
|
|
timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
|
|
filename = f'prediction_{timestamp}.json'
|
|
filepath = os.path.join(results_dir, filename)
|
|
|
|
# Prepare data for saving
|
|
save_data = {
|
|
'timestamp': datetime.datetime.now().isoformat(),
|
|
'file_path': file_path,
|
|
'prediction_type': prediction_type,
|
|
'prediction_params': prediction_params,
|
|
'input_data_summary': {
|
|
'rows': len(input_data),
|
|
'columns': list(input_data.columns),
|
|
'price_range': {
|
|
'open': {'min': float(input_data['open'].min()), 'max': float(input_data['open'].max())},
|
|
'high': {'min': float(input_data['high'].min()), 'max': float(input_data['high'].max())},
|
|
'low': {'min': float(input_data['low'].min()), 'max': float(input_data['low'].max())},
|
|
'close': {'min': float(input_data['close'].min()), 'max': float(input_data['close'].max())}
|
|
},
|
|
'last_values': {
|
|
'open': float(input_data['open'].iloc[-1]),
|
|
'high': float(input_data['high'].iloc[-1]),
|
|
'low': float(input_data['low'].iloc[-1]),
|
|
'close': float(input_data['close'].iloc[-1])
|
|
}
|
|
},
|
|
'prediction_results': prediction_results,
|
|
'actual_data': actual_data,
|
|
'analysis': {}
|
|
}
|
|
|
|
# If actual data exists, perform comparison analysis
|
|
if actual_data and len(actual_data) > 0:
|
|
# Calculate continuity analysis
|
|
if len(prediction_results) > 0 and len(actual_data) > 0:
|
|
last_pred = prediction_results[0] # First prediction point
|
|
first_actual = actual_data[0] # First actual point
|
|
|
|
save_data['analysis']['continuity'] = {
|
|
'last_prediction': {
|
|
'open': last_pred['open'],
|
|
'high': last_pred['high'],
|
|
'low': last_pred['low'],
|
|
'close': last_pred['close']
|
|
},
|
|
'first_actual': {
|
|
'open': first_actual['open'],
|
|
'high': first_actual['high'],
|
|
'low': first_actual['low'],
|
|
'close': first_actual['close']
|
|
},
|
|
'gaps': {
|
|
'open_gap': abs(last_pred['open'] - first_actual['open']),
|
|
'high_gap': abs(last_pred['high'] - first_actual['high']),
|
|
'low_gap': abs(last_pred['low'] - first_actual['low']),
|
|
'close_gap': abs(last_pred['close'] - first_actual['close'])
|
|
},
|
|
'gap_percentages': {
|
|
'open_gap_pct': (abs(last_pred['open'] - first_actual['open']) / first_actual['open']) * 100,
|
|
'high_gap_pct': (abs(last_pred['high'] - first_actual['high']) / first_actual['high']) * 100,
|
|
'low_gap_pct': (abs(last_pred['low'] - first_actual['low']) / first_actual['low']) * 100,
|
|
'close_gap_pct': (abs(last_pred['close'] - first_actual['close']) / first_actual['close']) * 100
|
|
}
|
|
}
|
|
|
|
# Save to file
|
|
with open(filepath, 'w', encoding='utf-8') as f:
|
|
json.dump(save_data, f, indent=2, ensure_ascii=False)
|
|
|
|
print(f"Prediction results saved to: {filepath}")
|
|
return filepath
|
|
|
|
except Exception as e:
|
|
print(f"Failed to save prediction results: {e}")
|
|
return None
|
|
|
|
# def create_prediction_chart(df, pred_df, lookback, pred_len, actual_df=None, historical_start_idx=0):
|
|
# """Create prediction chart"""
|
|
#
|
|
# print(f"🔍 创建图表调试:")
|
|
# print(f" 历史数据: {len(df) if df is not None else 0} 行")
|
|
# print(f" 预测数据: {len(pred_df) if pred_df is not None else 0} 行")
|
|
# print(f" 实际数据: {len(actual_df) if actual_df is not None else 0} 行")
|
|
#
|
|
# # 确保数据不为空
|
|
# if pred_df is None or len(pred_df) == 0:
|
|
# print("⚠️ 警告: 预测数据为空!")
|
|
# # 创建空图表
|
|
# fig = go.Figure()
|
|
# fig.update_layout(title='No prediction data available')
|
|
# return json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
|
|
#
|
|
# # 其余代码保持不变...
|
|
#
|
|
# # Use specified historical data start position, not always from the beginning of df
|
|
# if historical_start_idx + lookback + pred_len <= len(df):
|
|
# # Display lookback historical points + pred_len prediction points starting from specified position
|
|
# historical_df = df.iloc[historical_start_idx:historical_start_idx+lookback]
|
|
# prediction_range = range(historical_start_idx+lookback, historical_start_idx+lookback+pred_len)
|
|
# else:
|
|
# # If data is insufficient, adjust to maximum available range
|
|
# available_lookback = min(lookback, len(df) - historical_start_idx)
|
|
# available_pred_len = min(pred_len, max(0, len(df) - historical_start_idx - available_lookback))
|
|
# historical_df = df.iloc[historical_start_idx:historical_start_idx+available_lookback]
|
|
# prediction_range = range(historical_start_idx+available_lookback, historical_start_idx+available_lookback+available_pred_len)
|
|
#
|
|
# # Create chart
|
|
# fig = go.Figure()
|
|
#
|
|
# # Add historical data (candlestick chart)
|
|
# fig.add_trace(go.Candlestick(
|
|
# x=historical_df['timestamps'] if 'timestamps' in historical_df.columns else historical_df.index,
|
|
# open=historical_df['open'],
|
|
# high=historical_df['high'],
|
|
# low=historical_df['low'],
|
|
# close=historical_df['close'],
|
|
# name='Historical Data (400 data points)',
|
|
# increasing_line_color='#26A69A',
|
|
# decreasing_line_color='#EF5350'
|
|
# ))
|
|
#
|
|
# # Add prediction data (candlestick chart)
|
|
# if pred_df is not None and len(pred_df) > 0:
|
|
# # Calculate prediction data timestamps - ensure continuity with historical data
|
|
# if 'timestamps' in df.columns and len(historical_df) > 0:
|
|
# # Start from the last timestamp of historical data, create prediction timestamps with the same time interval
|
|
# last_timestamp = historical_df['timestamps'].iloc[-1]
|
|
# time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0] if len(df) > 1 else pd.Timedelta(hours=1)
|
|
#
|
|
# pred_timestamps = pd.date_range(
|
|
# start=last_timestamp + time_diff,
|
|
# periods=len(pred_df),
|
|
# freq=time_diff
|
|
# )
|
|
# else:
|
|
# # If no timestamps, use index
|
|
# pred_timestamps = range(len(historical_df), len(historical_df) + len(pred_df))
|
|
#
|
|
# fig.add_trace(go.Candlestick(
|
|
# x=pred_timestamps,
|
|
# open=pred_df['open'],
|
|
# high=pred_df['high'],
|
|
# low=pred_df['low'],
|
|
# close=pred_df['close'],
|
|
# name='Prediction Data (120 data points)',
|
|
# increasing_line_color='#66BB6A',
|
|
# decreasing_line_color='#FF7043'
|
|
# ))
|
|
#
|
|
# # Add actual data for comparison (if exists)
|
|
# if actual_df is not None and len(actual_df) > 0:
|
|
# # Actual data should be in the same time period as prediction data
|
|
# if 'timestamps' in df.columns:
|
|
# # Actual data should use the same timestamps as prediction data to ensure time alignment
|
|
# if 'pred_timestamps' in locals():
|
|
# actual_timestamps = pred_timestamps
|
|
# else:
|
|
# # If no prediction timestamps, calculate from the last timestamp of historical data
|
|
# if len(historical_df) > 0:
|
|
# last_timestamp = historical_df['timestamps'].iloc[-1]
|
|
# time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0] if len(df) > 1 else pd.Timedelta(hours=1)
|
|
# actual_timestamps = pd.date_range(
|
|
# start=last_timestamp + time_diff,
|
|
# periods=len(actual_df),
|
|
# freq=time_diff
|
|
# )
|
|
# else:
|
|
# actual_timestamps = range(len(historical_df), len(historical_df) + len(actual_df))
|
|
# else:
|
|
# actual_timestamps = range(len(historical_df), len(historical_df) + len(actual_df))
|
|
#
|
|
# fig.add_trace(go.Candlestick(
|
|
# x=actual_timestamps,
|
|
# open=actual_df['open'],
|
|
# high=actual_df['high'],
|
|
# low=actual_df['low'],
|
|
# close=actual_df['close'],
|
|
# name='Actual Data (120 data points)',
|
|
# increasing_line_color='#FF9800',
|
|
# decreasing_line_color='#F44336'
|
|
# ))
|
|
#
|
|
# # Update layout
|
|
# fig.update_layout(
|
|
# title='Kronos Financial Prediction Results - 400 Historical Points + 120 Prediction Points vs 120 Actual Points',
|
|
# xaxis_title='Time',
|
|
# yaxis_title='Price',
|
|
# template='plotly_white',
|
|
# height=600,
|
|
# showlegend=True
|
|
# )
|
|
#
|
|
# # Ensure x-axis time continuity
|
|
# if 'timestamps' in historical_df.columns:
|
|
# # Get all timestamps and sort them
|
|
# all_timestamps = []
|
|
# if len(historical_df) > 0:
|
|
# all_timestamps.extend(historical_df['timestamps'])
|
|
# if 'pred_timestamps' in locals():
|
|
# all_timestamps.extend(pred_timestamps)
|
|
# if 'actual_timestamps' in locals():
|
|
# all_timestamps.extend(actual_timestamps)
|
|
#
|
|
# if all_timestamps:
|
|
# all_timestamps = sorted(all_timestamps)
|
|
# fig.update_xaxes(
|
|
# range=[all_timestamps[0], all_timestamps[-1]],
|
|
# rangeslider_visible=False,
|
|
# type='date'
|
|
# )
|
|
#
|
|
# # 修改这一行:
|
|
# # return json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
|
|
#
|
|
# # 改为:
|
|
# try:
|
|
# chart_json = fig.to_json()
|
|
# print(f"✅ 图表JSON序列化成功,长度: {len(chart_json)}")
|
|
# return chart_json
|
|
# except Exception as e:
|
|
# print(f"❌ 图表序列化失败: {e}")
|
|
# # 返回一个简单的错误图表
|
|
# error_fig = go.Figure()
|
|
# error_fig.update_layout(title='Chart Rendering Error')
|
|
# return error_fig.to_json()
|
|
|
|
|
|
def create_prediction_chart(df, pred_df, lookback, pred_len, actual_df=None, historical_start_idx=0):
|
|
"""Create prediction chart"""
|
|
print(f"🔍 创建图表调试:")
|
|
print(f" 历史数据: {len(df) if df is not None else 0} 行")
|
|
print(f" 预测数据: {len(pred_df) if pred_df is not None else 0} 行")
|
|
print(f" 实际数据: {len(actual_df) if actual_df is not None else 0} 行")
|
|
|
|
# 确保数据不为空
|
|
if pred_df is None or len(pred_df) == 0:
|
|
print("⚠️ 警告: 预测数据为空!")
|
|
# 创建空图表
|
|
fig = go.Figure()
|
|
fig.update_layout(title='No prediction data available')
|
|
return json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
|
|
|
|
# Use specified historical data start position, not always from the beginning of df
|
|
if historical_start_idx + lookback + pred_len <= len(df):
|
|
# Display lookback historical points + pred_len prediction points starting from specified position
|
|
historical_df = df.iloc[historical_start_idx:historical_start_idx + lookback]
|
|
prediction_range = range(historical_start_idx + lookback, historical_start_idx + lookback + pred_len)
|
|
else:
|
|
# If data is insufficient, adjust to maximum available range
|
|
available_lookback = min(lookback, len(df) - historical_start_idx)
|
|
available_pred_len = min(pred_len, max(0, len(df) - historical_start_idx - available_lookback))
|
|
historical_df = df.iloc[historical_start_idx:historical_start_idx + available_lookback]
|
|
prediction_range = range(historical_start_idx + available_lookback,
|
|
historical_start_idx + available_lookback + available_pred_len)
|
|
|
|
# Create chart
|
|
fig = go.Figure()
|
|
|
|
# Add historical data (candlestick chart)
|
|
fig.add_trace(go.Candlestick(
|
|
x=historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
open=historical_df['open'].tolist(),
|
|
high=historical_df['high'].tolist(),
|
|
low=historical_df['low'].tolist(),
|
|
close=historical_df['close'].tolist(),
|
|
name='Historical Data (400 data points)',
|
|
increasing_line_color='#26A69A',
|
|
decreasing_line_color='#EF5350'
|
|
))
|
|
|
|
# Add prediction data (candlestick chart)
|
|
if pred_df is not None and len(pred_df) > 0:
|
|
# Calculate prediction data timestamps - ensure continuity with historical data
|
|
if 'timestamps' in df.columns and len(historical_df) > 0:
|
|
# Start from the last timestamp of historical data, create prediction timestamps with the same time interval
|
|
last_timestamp = historical_df['timestamps'].iloc[-1]
|
|
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0] if len(df) > 1 else pd.Timedelta(hours=1)
|
|
|
|
pred_timestamps = pd.date_range(
|
|
start=last_timestamp + time_diff,
|
|
periods=len(pred_df),
|
|
freq=time_diff
|
|
)
|
|
else:
|
|
# If no timestamps, use index
|
|
pred_timestamps = range(len(historical_df), len(historical_df) + len(pred_df))
|
|
|
|
fig.add_trace(go.Candlestick(
|
|
x=pred_timestamps.tolist() if hasattr(pred_timestamps, 'tolist') else list(pred_timestamps),
|
|
open=pred_df['open'].tolist(),
|
|
high=pred_df['high'].tolist(),
|
|
low=pred_df['low'].tolist(),
|
|
close=pred_df['close'].tolist(),
|
|
name='Prediction Data (120 data points)',
|
|
increasing_line_color='#66BB6A',
|
|
decreasing_line_color='#FF7043'
|
|
))
|
|
|
|
# Add actual data for comparison (if exists)
|
|
if actual_df is not None and len(actual_df) > 0:
|
|
# Actual data should be in the same time period as prediction data
|
|
if 'timestamps' in df.columns:
|
|
# Actual data should use the same timestamps as prediction data to ensure time alignment
|
|
if 'pred_timestamps' in locals():
|
|
actual_timestamps = pred_timestamps
|
|
else:
|
|
# If no prediction timestamps, calculate from the last timestamp of historical data
|
|
if len(historical_df) > 0:
|
|
last_timestamp = historical_df['timestamps'].iloc[-1]
|
|
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0] if len(df) > 1 else pd.Timedelta(
|
|
hours=1)
|
|
actual_timestamps = pd.date_range(
|
|
start=last_timestamp + time_diff,
|
|
periods=len(actual_df),
|
|
freq=time_diff
|
|
)
|
|
else:
|
|
actual_timestamps = range(len(historical_df), len(historical_df) + len(actual_df))
|
|
else:
|
|
actual_timestamps = range(len(historical_df), len(historical_df) + len(actual_df))
|
|
|
|
fig.add_trace(go.Candlestick(
|
|
x=actual_timestamps.tolist() if hasattr(actual_timestamps, 'tolist') else list(actual_timestamps),
|
|
open=actual_df['open'].tolist(),
|
|
high=actual_df['high'].tolist(),
|
|
low=actual_df['low'].tolist(),
|
|
close=actual_df['close'].tolist(),
|
|
name='Actual Data (120 data points)',
|
|
increasing_line_color='#FF9800',
|
|
decreasing_line_color='#F44336'
|
|
))
|
|
|
|
# Update layout
|
|
fig.update_layout(
|
|
title='Kronos Financial Prediction Results - 400 Historical Points + 120 Prediction Points vs 120 Actual Points',
|
|
xaxis_title='Time',
|
|
yaxis_title='Price',
|
|
template='plotly_white',
|
|
height=600,
|
|
showlegend=True
|
|
)
|
|
|
|
# Ensure x-axis time continuity
|
|
if 'timestamps' in historical_df.columns:
|
|
# Get all timestamps and sort them
|
|
all_timestamps = []
|
|
if len(historical_df) > 0:
|
|
all_timestamps.extend(historical_df['timestamps'].tolist())
|
|
if 'pred_timestamps' in locals():
|
|
all_timestamps.extend(
|
|
pred_timestamps.tolist() if hasattr(pred_timestamps, 'tolist') else list(pred_timestamps))
|
|
if 'actual_timestamps' in locals():
|
|
all_timestamps.extend(
|
|
actual_timestamps.tolist() if hasattr(actual_timestamps, 'tolist') else list(actual_timestamps))
|
|
|
|
if all_timestamps:
|
|
all_timestamps = sorted(all_timestamps)
|
|
fig.update_xaxes(
|
|
range=[all_timestamps[0], all_timestamps[-1]],
|
|
rangeslider_visible=False,
|
|
type='date'
|
|
)
|
|
|
|
# return json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
|
|
try:
|
|
chart_json = fig.to_json()
|
|
print(f"✅ 图表数据序列化完成,长度: {len(chart_json)}")
|
|
return chart_json
|
|
except Exception as e:
|
|
print(f"❌ 图表序列化失败: {e}")
|
|
error_fig = go.Figure()
|
|
error_fig.update_layout(title='Chart Rendering Error')
|
|
return error_fig.to_json()
|
|
|
|
|
|
# 计算指标
|
|
def calculate_indicators(df):
|
|
indicators = {}
|
|
|
|
# 计算移动平均线 (MA)
|
|
indicators['ma5'] = df['close'].rolling(window=5).mean()
|
|
indicators['ma10'] = df['close'].rolling(window=10).mean()
|
|
indicators['ma20'] = df['close'].rolling(window=20).mean()
|
|
|
|
# 计算MACD
|
|
exp12 = df['close'].ewm(span=12, adjust=False).mean()
|
|
exp26 = df['close'].ewm(span=26, adjust=False).mean()
|
|
indicators['macd'] = exp12 - exp26
|
|
indicators['signal'] = indicators['macd'].ewm(span=9, adjust=False).mean()
|
|
indicators['macd_hist'] = indicators['macd'] - indicators['signal']
|
|
|
|
# 计算RSI
|
|
delta = df['close'].diff()
|
|
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
|
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
|
rs = gain / loss
|
|
indicators['rsi'] = 100 - (100 / (1 + rs))
|
|
|
|
# 计算布林带
|
|
indicators['bb_mid'] = df['close'].rolling(window=20).mean()
|
|
indicators['bb_std'] = df['close'].rolling(window=20).std()
|
|
indicators['bb_upper'] = indicators['bb_mid'] + 2 * indicators['bb_std']
|
|
indicators['bb_lower'] = indicators['bb_mid'] - 2 * indicators['bb_std']
|
|
|
|
# 计算随机震荡指标
|
|
low_min = df['low'].rolling(window=14).min()
|
|
high_max = df['high'].rolling(window=14).max()
|
|
indicators['stoch_k'] = 100 * ((df['close'] - low_min) / (high_max - low_min))
|
|
indicators['stoch_d'] = indicators['stoch_k'].rolling(window=3).mean()
|
|
|
|
# 滚动窗口均值策略
|
|
indicators['rwms_window'] = 90
|
|
indicators['rwms_mean'] = df['close'].rolling(window=90).mean()
|
|
indicators['rwms_signal'] = (df['close'] > indicators['rwms_mean']).astype(int)
|
|
|
|
# 三重指数平均(TRIX)策略
|
|
# 计算收盘价的EMA
|
|
ema1 = df['close'].ewm(span=12, adjust=False).mean()
|
|
# 计算EMA的EMA
|
|
ema2 = ema1.ewm(span=12, adjust=False).mean()
|
|
# 计算EMA的EMA的EMA
|
|
ema3 = ema2.ewm(span=12, adjust=False).mean()
|
|
# 计算TRIX
|
|
indicators['trix'] = (ema3 - ema3.shift(1)) / ema3.shift(1) * 100
|
|
# 计算信号线
|
|
indicators['trix_signal'] = indicators['trix'].ewm(span=9, adjust=False).mean()
|
|
|
|
return indicators
|
|
|
|
|
|
# 创建图表
|
|
def create_technical_chart(df, pred_df, lookback, pred_len, diagram_type, actual_df=None, historical_start_idx=0):
|
|
print(f" 🔍 数据内容: {len(df) if df is not None else 0} 行")
|
|
print(f" 🔍 图表类型: {diagram_type}")
|
|
|
|
# 数据范围
|
|
if historical_start_idx + lookback <= len(df):
|
|
historical_df = df.iloc[historical_start_idx:historical_start_idx + lookback]
|
|
else:
|
|
available_lookback = min(lookback, len(df) - historical_start_idx)
|
|
historical_df = df.iloc[historical_start_idx:historical_start_idx + available_lookback]
|
|
|
|
# 计算指标
|
|
historical_indicators = calculate_indicators(historical_df)
|
|
|
|
fig = go.Figure()
|
|
|
|
# 成交量图表
|
|
if diagram_type == 'Volume Chart (VOL)':
|
|
fig.add_trace(go.Bar(
|
|
x = historical_df['timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_df['volume'].tolist() if 'volume' in historical_df.columns else [],
|
|
name = 'Historical Volume',
|
|
marker_color='#42A5F5'
|
|
))
|
|
|
|
if actual_df is not None and len(actual_df) > 0 and 'volume' in actual_df.columns:
|
|
if 'timestamps' in df.columns and len(historical_df) > 0:
|
|
last_timestamp = historical_df['timestamps'].iloc[-1]
|
|
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0] if len(df) > 1 else pd.Timedelta(
|
|
hours=1)
|
|
actual_timestamps = pd.date_range(start=last_timestamp + time_diff, periods=len(actual_df),freq=time_diff)
|
|
else:
|
|
actual_timestamps = range(len(historical_df), len(historical_df) + len(actual_df))
|
|
|
|
fig.add_trace(go.Bar(
|
|
x = actual_timestamps.tolist() if hasattr(actual_timestamps, 'tolist') else list(actual_timestamps),
|
|
y = actual_df['volume'].tolist(),
|
|
name = 'Actual Volume',
|
|
marker_color='#FF9800'
|
|
))
|
|
|
|
fig.update_layout(yaxis_title='Volume')
|
|
|
|
# 移动平均线
|
|
elif diagram_type == 'Moving Average (MA)':
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df['timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['ma5'],
|
|
name='MA5',
|
|
line=dict(color='#26A69A', width=1)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['ma10'],
|
|
name = 'MA10',
|
|
line = dict(color = '#42A5F5', width = 1)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['ma20'],
|
|
name = 'MA20',
|
|
line = dict(color = '#7E57C2', width = 1)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_df['close'],
|
|
name = 'Close Price',
|
|
line = dict(color = '#212121', width = 1, dash = 'dash')
|
|
))
|
|
|
|
fig.update_layout(yaxis_title = 'Price')
|
|
|
|
# MACD指标
|
|
elif diagram_type == 'MACD Indicator (MACD)':
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['macd'],
|
|
name = 'MACD',
|
|
line = dict(color = '#26A69A', width = 1)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['signal'],
|
|
name = 'Signal',
|
|
line = dict(color = '#EF5350', width = 1)
|
|
))
|
|
|
|
fig.add_trace(go.Bar(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['macd_hist'],
|
|
name = 'MACD Histogram',
|
|
marker_color = '#42A5F5'
|
|
))
|
|
|
|
# 零轴线
|
|
fig.add_hline(y = 0, line_dash = "dash", line_color = "gray")
|
|
fig.update_layout(yaxis_title = 'MACD')
|
|
|
|
# RSI指标
|
|
elif diagram_type == 'RSI Indicator (RSI)':
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['rsi'],
|
|
name = 'RSI',
|
|
line = dict(color = '#26A69A', width = 1)
|
|
))
|
|
|
|
# 超买超卖线
|
|
fig.add_hline(y = 70, line_dash = "dash", line_color = "red", name = 'Overbought')
|
|
fig.add_hline(y = 30, line_dash = "dash", line_color = "green", name = 'Oversold')
|
|
fig.update_layout(yaxis_title = 'RSI', yaxis_range = [0, 100])
|
|
|
|
# 布林带
|
|
elif diagram_type == 'Bollinger Bands (BB)':
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['bb_upper'],
|
|
name = 'Upper Band',
|
|
line = dict(color = '#EF5350', width = 1)
|
|
))
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['bb_mid'],
|
|
name = 'Middle Band (MA20)',
|
|
line = dict(color = '#42A5F5', width = 1)
|
|
))
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['bb_lower'],
|
|
name = 'Lower Band',
|
|
line = dict(color = '#26A69A', width = 1)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_df['close'],
|
|
name = 'Close Price',
|
|
line = dict(color = '#212121', width = 1)
|
|
))
|
|
|
|
fig.update_layout(yaxis_title = 'Price')
|
|
|
|
# 随机震荡指标
|
|
elif diagram_type == 'Stochastic Oscillator (STOCH)':
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['stoch_k'],
|
|
name = '%K',
|
|
line = dict(color = '#26A69A', width = 1)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['stoch_d'],
|
|
name = '%D',
|
|
line = dict(color = '#EF5350', width = 1)
|
|
))
|
|
|
|
fig.add_hline(y = 80, line_dash = "dash", line_color = "red", name = 'Overbought')
|
|
fig.add_hline(y = 20, line_dash = "dash", line_color = "green", name = 'Oversold')
|
|
fig.update_layout(yaxis_title = 'Stochastic', yaxis_range = [0, 100])
|
|
|
|
# 滚动窗口均值策略
|
|
elif diagram_type == 'Rolling Window Mean Strategy':
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_df['close'],
|
|
name = 'Close Price',
|
|
line = dict(color = '#212121', width = 1.5)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x = historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y = historical_indicators['rwms_mean'],
|
|
name = f'Rolling Mean ({historical_indicators["rwms_window"]} periods)',
|
|
line = dict(color = '#42A5F5', width = 1.5, dash = 'dash')
|
|
))
|
|
|
|
buy_signals = historical_df[historical_indicators['rwms_signal'] == 1]
|
|
fig.add_trace(go.Scatter(
|
|
x = buy_signals['timestamps'].tolist() if 'timestamps' in buy_signals.columns else buy_signals.index.tolist(),
|
|
y = buy_signals['close'],
|
|
mode = 'markers',
|
|
name = 'Buy Signal',
|
|
marker = dict(color = '#26A69A', size = 8, symbol = 'triangle-up')
|
|
))
|
|
|
|
sell_signals = historical_df[historical_indicators['rwms_signal'] == 0]
|
|
fig.add_trace(go.Scatter(
|
|
x = sell_signals[
|
|
'timestamps'].tolist() if 'timestamps' in sell_signals.columns else sell_signals.index.tolist(),
|
|
y = sell_signals['close'],
|
|
mode = 'markers',
|
|
name = 'Sell Signal',
|
|
marker = dict(color = '#EF5350', size = 8, symbol = 'triangle-down')
|
|
))
|
|
|
|
fig.update_layout(
|
|
yaxis_title = 'Price',
|
|
title = f'Rolling Window Mean Strategy (Window Size: {historical_indicators["rwms_window"]})'
|
|
)
|
|
|
|
# TRIX指标图表
|
|
elif diagram_type == 'TRIX Indicator (TRIX)':
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x=historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y=historical_indicators['trix'],
|
|
name='TRIX',
|
|
line=dict(color='#26A69A', width=1)
|
|
))
|
|
|
|
fig.add_trace(go.Scatter(
|
|
x=historical_df[
|
|
'timestamps'].tolist() if 'timestamps' in historical_df.columns else historical_df.index.tolist(),
|
|
y=historical_indicators['trix_signal'],
|
|
name='TRIX Signal',
|
|
line=dict(color='#EF5350', width=1)
|
|
))
|
|
|
|
fig.add_hline(y=0, line_dash="dash", line_color="gray")
|
|
|
|
fig.update_layout(
|
|
yaxis_title='TRIX (%)',
|
|
title='Triple Exponential Average (TRIX) Strategy'
|
|
)
|
|
|
|
# 布局设置
|
|
fig.update_layout(
|
|
title = f'{diagram_type} - Technical Indicator (Real Data Only)',
|
|
xaxis_title = 'Time',
|
|
template = 'plotly_white',
|
|
height = 400,
|
|
showlegend = True,
|
|
margin = dict(t = 50, b = 30)
|
|
)
|
|
|
|
if 'timestamps' in historical_df.columns:
|
|
all_timestamps = historical_df['timestamps'].tolist()
|
|
|
|
if actual_df is not None and len(actual_df) > 0 and 'timestamps' in df.columns:
|
|
if 'actual_timestamps' in locals():
|
|
all_timestamps.extend(actual_timestamps.tolist())
|
|
|
|
if all_timestamps:
|
|
all_timestamps = sorted(all_timestamps)
|
|
fig.update_xaxes(
|
|
range=[all_timestamps[0], all_timestamps[-1]],
|
|
rangeslider_visible=False,
|
|
type='date'
|
|
)
|
|
|
|
try:
|
|
chart_json = fig.to_json()
|
|
print(f"✅ 技术指标图表序列化完成,长度: {len(chart_json)}")
|
|
return chart_json
|
|
except Exception as e:
|
|
print(f"❌ 技术指标图表序列化失败: {e}")
|
|
error_fig = go.Figure()
|
|
error_fig.update_layout(title='Chart Rendering Error')
|
|
return error_fig.to_json()
|
|
|
|
|
|
@app.route('/')
|
|
def index():
|
|
"""Home page"""
|
|
return render_template('index.html')
|
|
|
|
|
|
@app.route('/api/data-files')
|
|
def get_data_files():
|
|
"""Get available data file list"""
|
|
data_files = load_data_files()
|
|
return jsonify(data_files)
|
|
|
|
|
|
@app.route('/api/load-data', methods=['POST'])
|
|
def load_data():
|
|
"""Load data file"""
|
|
try:
|
|
data = request.get_json()
|
|
file_path = data.get('file_path')
|
|
|
|
if not file_path:
|
|
return jsonify({'error': 'File path cannot be empty'}), 400
|
|
|
|
df, error = load_data_file(file_path)
|
|
if error:
|
|
return jsonify({'error': error}), 400
|
|
|
|
# Detect data time frequency
|
|
def detect_timeframe(df):
|
|
if len(df) < 2:
|
|
return "Unknown"
|
|
|
|
time_diffs = []
|
|
for i in range(1, min(10, len(df))): # Check first 10 time differences
|
|
diff = df['timestamps'].iloc[i] - df['timestamps'].iloc[i-1]
|
|
time_diffs.append(diff)
|
|
|
|
if not time_diffs:
|
|
return "Unknown"
|
|
|
|
# Calculate average time difference
|
|
avg_diff = sum(time_diffs, pd.Timedelta(0)) / len(time_diffs)
|
|
|
|
# Convert to readable format
|
|
if avg_diff < pd.Timedelta(minutes=1):
|
|
return f"{avg_diff.total_seconds():.0f} seconds"
|
|
elif avg_diff < pd.Timedelta(hours=1):
|
|
return f"{avg_diff.total_seconds() / 60:.0f} minutes"
|
|
elif avg_diff < pd.Timedelta(days=1):
|
|
return f"{avg_diff.total_seconds() / 3600:.0f} hours"
|
|
else:
|
|
return f"{avg_diff.days} days"
|
|
|
|
# Return data information
|
|
data_info = {
|
|
'rows': len(df),
|
|
'columns': list(df.columns),
|
|
'start_date': df['timestamps'].min().isoformat() if 'timestamps' in df.columns else 'N/A',
|
|
'end_date': df['timestamps'].max().isoformat() if 'timestamps' in df.columns else 'N/A',
|
|
'price_range': {
|
|
'min': float(df[['open', 'high', 'low', 'close']].min().min()),
|
|
'max': float(df[['open', 'high', 'low', 'close']].max().max())
|
|
},
|
|
'prediction_columns': ['open', 'high', 'low', 'close'] + (['volume'] if 'volume' in df.columns else []),
|
|
'timeframe': detect_timeframe(df)
|
|
}
|
|
|
|
return jsonify({
|
|
'success': True,
|
|
'data_info': data_info,
|
|
'message': f'Successfully loaded data, total {len(df)} rows'
|
|
})
|
|
|
|
except Exception as e:
|
|
return jsonify({'error': f'Failed to load data: {str(e)}'}), 500
|
|
|
|
# @app.route('/api/predict', methods=['POST'])
|
|
# def predict():
|
|
# """Perform prediction"""
|
|
# try:
|
|
# data = request.get_json()
|
|
# file_path = data.get('file_path')
|
|
# lookback = int(data.get('lookback', 400))
|
|
# pred_len = int(data.get('pred_len', 120))
|
|
#
|
|
# # Get prediction quality parameters
|
|
# temperature = float(data.get('temperature', 1.0))
|
|
# top_p = float(data.get('top_p', 0.9))
|
|
# sample_count = int(data.get('sample_count', 1))
|
|
#
|
|
# if not file_path:
|
|
# return jsonify({'error': 'File path cannot be empty'}), 400
|
|
#
|
|
# # Load data
|
|
# df, error = load_data_file(file_path)
|
|
# if error:
|
|
# return jsonify({'error': error}), 400
|
|
#
|
|
# if len(df) < lookback:
|
|
# return jsonify({'error': f'Insufficient data length, need at least {lookback} rows'}), 400
|
|
#
|
|
# # Perform prediction
|
|
# if MODEL_AVAILABLE and predictor is not None:
|
|
# try:
|
|
# # Use real Kronos model
|
|
# # Only use necessary columns: OHLCV, excluding amount
|
|
# required_cols = ['open', 'high', 'low', 'close']
|
|
# if 'volume' in df.columns:
|
|
# required_cols.append('volume')
|
|
#
|
|
# # Process time period selection
|
|
# start_date = data.get('start_date')
|
|
#
|
|
# if start_date:
|
|
# # Custom time period - fix logic: use data within selected window
|
|
# start_dt = pd.to_datetime(start_date)
|
|
#
|
|
# # Find data after start time
|
|
# mask = df['timestamps'] >= start_dt
|
|
# time_range_df = df[mask]
|
|
#
|
|
# # Ensure sufficient data: lookback + pred_len
|
|
# if len(time_range_df) < lookback + pred_len:
|
|
# return jsonify({'error': f'Insufficient data from start time {start_dt.strftime("%Y-%m-%d %H:%M")}, need at least {lookback + pred_len} data points, currently only {len(time_range_df)} available'}), 400
|
|
#
|
|
# # Use first lookback data points within selected window for prediction
|
|
# x_df = time_range_df.iloc[:lookback][required_cols]
|
|
# x_timestamp = time_range_df.iloc[:lookback]['timestamps']
|
|
#
|
|
# # Use last pred_len data points within selected window as actual values
|
|
# y_timestamp = time_range_df.iloc[lookback:lookback+pred_len]['timestamps']
|
|
#
|
|
# # Calculate actual time period length
|
|
# start_timestamp = time_range_df['timestamps'].iloc[0]
|
|
# end_timestamp = time_range_df['timestamps'].iloc[lookback+pred_len-1]
|
|
# time_span = end_timestamp - start_timestamp
|
|
#
|
|
# prediction_type = f"Kronos model prediction (within selected window: first {lookback} data points for prediction, last {pred_len} data points for comparison, time span: {time_span})"
|
|
# else:
|
|
# # Use latest data
|
|
# x_df = df.iloc[:lookback][required_cols]
|
|
# x_timestamp = df.iloc[:lookback]['timestamps']
|
|
# y_timestamp = df.iloc[lookback:lookback+pred_len]['timestamps']
|
|
# prediction_type = "Kronos model prediction (latest data)"
|
|
#
|
|
# # Ensure timestamps are Series format, not DatetimeIndex, to avoid .dt attribute error in Kronos model
|
|
# if isinstance(x_timestamp, pd.DatetimeIndex):
|
|
# x_timestamp = pd.Series(x_timestamp, name='timestamps')
|
|
# if isinstance(y_timestamp, pd.DatetimeIndex):
|
|
# y_timestamp = pd.Series(y_timestamp, name='timestamps')
|
|
#
|
|
# # # 在 pred_df = predictor.predict(...) 之前添加:
|
|
# # print("🔍 调试预测输入:")
|
|
# # print(f"x_df 类型: {type(x_df)}")
|
|
# # print(f"x_df 形状: {x_df.shape}")
|
|
# # print(f"x_df 列名: {x_df.columns.tolist()}")
|
|
# # print(f"x_df 数据类型: {x_df.dtypes}")
|
|
# #
|
|
# # print(f"x_timestamp 类型: {type(x_timestamp)}")
|
|
# # print(f"x_timestamp 长度: {len(x_timestamp)}")
|
|
# #
|
|
# # print(f"y_timestamp 类型: {type(y_timestamp)}")
|
|
# # print(f"y_timestamp 长度: {len(y_timestamp)}")
|
|
# #
|
|
# # # 检查数据内容
|
|
# # print("x_df 前5行:")
|
|
# # print(x_df.head())
|
|
# #
|
|
# # # 在调用 predict 前确保数据格式正确
|
|
# # print(f"x_df 实际形状: {x_df.shape}") # 确认是 (400, 5)
|
|
# # print(f"x_df 数值类型: {x_df.values.dtype}")
|
|
# #
|
|
# # # 确保没有隐藏的索引列
|
|
# # x_df_clean = x_df.reset_index(drop=True)
|
|
# # print(f"重置索引后形状: {x_df_clean.shape}")
|
|
# #
|
|
# # # 在调用 predict 之前添加更详细的调试
|
|
# # print("🔍 深入调试 KronosPredictor:")
|
|
# #
|
|
# # # 检查 predictor 的属性
|
|
# # print(f"predictor 类型: {type(predictor)}")
|
|
# # print(f"predictor 设备: {getattr(predictor, 'device', 'unknown')}")
|
|
# # print(f"predictor max_context: {getattr(predictor, 'max_context', 'unknown')}")
|
|
# #
|
|
# # # 检查模型输入维度
|
|
# # if hasattr(predictor, 'model'):
|
|
# # model = predictor.model
|
|
# # print(f"模型参数示例:")
|
|
# # for name, param in model.named_parameters():
|
|
# # if 'weight' in name and param.dim() == 2:
|
|
# # print(f" {name}: {param.shape}")
|
|
# # break
|
|
# #
|
|
# # # 尝试手动准备数据
|
|
# # try:
|
|
# # # 将数据转换为 tensor 看看维度
|
|
# # import torch
|
|
# # x_tensor = torch.tensor(x_df.values, dtype=torch.float32)
|
|
# # print(f"Tensor 形状: {x_tensor.shape}")
|
|
# #
|
|
# # # 检查 tokenizer 的输入维度
|
|
# # if hasattr(predictor, 'tokenizer'):
|
|
# # tokenizer = predictor.tokenizer
|
|
# # print(f"tokenizer 输入维度: {getattr(tokenizer, 'd_in', 'unknown')}")
|
|
# #
|
|
# # except Exception as e:
|
|
# # print(f"Tensor 转换错误: {e}")
|
|
# #
|
|
# # # 在 predict 调用前测试 tokenizer
|
|
# # try:
|
|
# # # 测试 tokenizer 是否能正确处理数据
|
|
# # test_data = x_df.values # (400, 5)
|
|
# # print(f"测试数据形状: {test_data.shape}")
|
|
# #
|
|
# # # 尝试手动调用 tokenizer
|
|
# # if hasattr(predictor.tokenizer, 'encode'):
|
|
# # encoded = predictor.tokenizer.encode(test_data)
|
|
# # print(f"Tokenized 数据形状: {encoded.shape}")
|
|
# # else:
|
|
# # print("Tokenizer 没有 encode 方法")
|
|
# #
|
|
# # except Exception as e:
|
|
# # print(f"Tokenizer 测试错误: {e}")
|
|
#
|
|
# pred_df = predictor.predict(
|
|
# df=x_df,
|
|
# x_timestamp=x_timestamp,
|
|
# y_timestamp=y_timestamp,
|
|
# pred_len=pred_len,
|
|
# T=temperature,
|
|
# top_p=top_p,
|
|
# sample_count=sample_count
|
|
# )
|
|
#
|
|
# except Exception as e:
|
|
# return jsonify({'error': f'Kronos model prediction failed: {str(e)}'}), 500
|
|
# else:
|
|
# return jsonify({'error': 'Kronos model not loaded, please load model first'}), 400
|
|
#
|
|
# # Prepare actual data for comparison (if exists)
|
|
# actual_data = []
|
|
# actual_df = None
|
|
#
|
|
# if start_date: # Custom time period
|
|
# # Fix logic: use data within selected window
|
|
# # Prediction uses first 400 data points within selected window
|
|
# # Actual data should be last 120 data points within selected window
|
|
# start_dt = pd.to_datetime(start_date)
|
|
#
|
|
# # Find data starting from start_date
|
|
# mask = df['timestamps'] >= start_dt
|
|
# time_range_df = df[mask]
|
|
#
|
|
# if len(time_range_df) >= lookback + pred_len:
|
|
# # Get last 120 data points within selected window as actual values
|
|
# actual_df = time_range_df.iloc[lookback:lookback+pred_len]
|
|
#
|
|
# for i, (_, row) in enumerate(actual_df.iterrows()):
|
|
# actual_data.append({
|
|
# 'timestamp': row['timestamps'].isoformat(),
|
|
# 'open': float(row['open']),
|
|
# 'high': float(row['high']),
|
|
# 'low': float(row['low']),
|
|
# 'close': float(row['close']),
|
|
# 'volume': float(row['volume']) if 'volume' in row else 0,
|
|
# 'amount': float(row['amount']) if 'amount' in row else 0
|
|
# })
|
|
# else: # Latest data
|
|
# # Prediction uses first 400 data points
|
|
# # Actual data should be 120 data points after first 400 data points
|
|
# if len(df) >= lookback + pred_len:
|
|
# actual_df = df.iloc[lookback:lookback+pred_len]
|
|
# for i, (_, row) in enumerate(actual_df.iterrows()):
|
|
# actual_data.append({
|
|
# 'timestamp': row['timestamps'].isoformat(),
|
|
# 'open': float(row['open']),
|
|
# 'high': float(row['high']),
|
|
# 'low': float(row['low']),
|
|
# 'close': float(row['close']),
|
|
# 'volume': float(row['volume']) if 'volume' in row else 0,
|
|
# 'amount': float(row['amount']) if 'amount' in row else 0
|
|
# })
|
|
#
|
|
# # Create chart - pass historical data start position
|
|
# if start_date:
|
|
# # Custom time period: find starting position of historical data in original df
|
|
# start_dt = pd.to_datetime(start_date)
|
|
# mask = df['timestamps'] >= start_dt
|
|
# historical_start_idx = df[mask].index[0] if len(df[mask]) > 0 else 0
|
|
# else:
|
|
# # Latest data: start from beginning
|
|
# historical_start_idx = 0
|
|
#
|
|
# chart_json = create_prediction_chart(df, pred_df, lookback, pred_len, actual_df, historical_start_idx)
|
|
#
|
|
# # Prepare prediction result data - fix timestamp calculation logic
|
|
# if 'timestamps' in df.columns:
|
|
# if start_date:
|
|
# # Custom time period: use selected window data to calculate timestamps
|
|
# start_dt = pd.to_datetime(start_date)
|
|
# mask = df['timestamps'] >= start_dt
|
|
# time_range_df = df[mask]
|
|
#
|
|
# if len(time_range_df) >= lookback:
|
|
# # Calculate prediction timestamps starting from last time point of selected window
|
|
# last_timestamp = time_range_df['timestamps'].iloc[lookback-1]
|
|
# time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0]
|
|
# future_timestamps = pd.date_range(
|
|
# start=last_timestamp + time_diff,
|
|
# periods=pred_len,
|
|
# freq=time_diff
|
|
# )
|
|
# else:
|
|
# future_timestamps = []
|
|
# else:
|
|
# # Latest data: calculate from last time point of entire data file
|
|
# last_timestamp = df['timestamps'].iloc[-1]
|
|
# time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0]
|
|
# future_timestamps = pd.date_range(
|
|
# start=last_timestamp + time_diff,
|
|
# periods=pred_len,
|
|
# freq=time_diff
|
|
# )
|
|
# else:
|
|
# future_timestamps = range(len(df), len(df) + pred_len)
|
|
#
|
|
# prediction_results = []
|
|
# for i, (_, row) in enumerate(pred_df.iterrows()):
|
|
# prediction_results.append({
|
|
# 'timestamp': future_timestamps[i].isoformat() if i < len(future_timestamps) else f"T{i}",
|
|
# 'open': float(row['open']),
|
|
# 'high': float(row['high']),
|
|
# 'low': float(row['low']),
|
|
# 'close': float(row['close']),
|
|
# 'volume': float(row['volume']) if 'volume' in row else 0,
|
|
# 'amount': float(row['amount']) if 'amount' in row else 0
|
|
# })
|
|
#
|
|
# # Save prediction results to file
|
|
# try:
|
|
# save_prediction_results(
|
|
# file_path=file_path,
|
|
# prediction_type=prediction_type,
|
|
# prediction_results=prediction_results,
|
|
# actual_data=actual_data,
|
|
# input_data=x_df,
|
|
# prediction_params={
|
|
# 'lookback': lookback,
|
|
# 'pred_len': pred_len,
|
|
# 'temperature': temperature,
|
|
# 'top_p': top_p,
|
|
# 'sample_count': sample_count,
|
|
# 'start_date': start_date if start_date else 'latest'
|
|
# }
|
|
# )
|
|
# except Exception as e:
|
|
# print(f"Failed to save prediction results: {e}")
|
|
#
|
|
# return jsonify({
|
|
# 'success': True,
|
|
# 'prediction_type': prediction_type,
|
|
# 'chart': chart_json,
|
|
# 'prediction_results': prediction_results,
|
|
# 'actual_data': actual_data,
|
|
# 'has_comparison': len(actual_data) > 0,
|
|
# 'message': f'Prediction completed, generated {pred_len} prediction points' + (f', including {len(actual_data)} actual data points for comparison' if len(actual_data) > 0 else '')
|
|
# })
|
|
#
|
|
# except Exception as e:
|
|
# return jsonify({'error': f'Prediction failed: {str(e)}'}), 500
|
|
|
|
|
|
@app.route('/api/predict', methods=['POST'])
|
|
def predict():
|
|
"""Perform prediction"""
|
|
try:
|
|
data = request.get_json()
|
|
file_path = data.get('file_path')
|
|
lookback = int(data.get('lookback', 400))
|
|
pred_len = int(data.get('pred_len', 120))
|
|
|
|
# Get prediction quality parameters
|
|
temperature = float(data.get('temperature', 1.0))
|
|
top_p = float(data.get('top_p', 0.9))
|
|
sample_count = int(data.get('sample_count', 1))
|
|
|
|
if not file_path:
|
|
return jsonify({'error': 'File path cannot be empty'}), 400
|
|
|
|
# Load data
|
|
df, error = load_data_file(file_path)
|
|
if error:
|
|
return jsonify({'error': error}), 400
|
|
|
|
if len(df) < lookback:
|
|
return jsonify({'error': f'Insufficient data length, need at least {lookback} rows'}), 400
|
|
|
|
# Perform prediction
|
|
if MODEL_AVAILABLE and predictor is not None:
|
|
try:
|
|
# Use real Kronos model
|
|
# Only use necessary columns: OHLCV + amount
|
|
required_cols = ['open', 'high', 'low', 'close', 'volume', 'amount']
|
|
|
|
# Process time period selection
|
|
start_date = data.get('start_date')
|
|
|
|
if start_date:
|
|
# Custom time period - fix logic: use data within selected window
|
|
start_dt = pd.to_datetime(start_date)
|
|
|
|
# Find data after start time
|
|
mask = df['timestamps'] >= start_dt
|
|
time_range_df = df[mask]
|
|
|
|
# Ensure sufficient data: lookback + pred_len
|
|
if len(time_range_df) < lookback + pred_len:
|
|
return jsonify({
|
|
'error': f'Insufficient data from start time {start_dt.strftime("%Y-%m-%d %H:%M")}, need at least {lookback + pred_len} data points, currently only {len(time_range_df)} available'}), 400
|
|
|
|
# Use first lookback data points within selected window for prediction
|
|
x_df = time_range_df.iloc[:lookback][required_cols]
|
|
x_timestamp = time_range_df.iloc[:lookback]['timestamps']
|
|
|
|
# Use last pred_len data points within selected window as actual values
|
|
y_timestamp = time_range_df.iloc[lookback:lookback + pred_len]['timestamps']
|
|
|
|
# Calculate actual time period length
|
|
start_timestamp = time_range_df['timestamps'].iloc[0]
|
|
end_timestamp = time_range_df['timestamps'].iloc[lookback + pred_len - 1]
|
|
time_span = end_timestamp - start_timestamp
|
|
|
|
prediction_type = f"Kronos model prediction (within selected window: first {lookback} data points for prediction, last {pred_len} data points for comparison, time span: {time_span})"
|
|
else:
|
|
# Use latest data
|
|
x_df = df.iloc[:lookback][required_cols]
|
|
x_timestamp = df.iloc[:lookback]['timestamps']
|
|
y_timestamp = df.iloc[lookback:lookback + pred_len]['timestamps']
|
|
prediction_type = "Kronos model prediction (latest data)"
|
|
|
|
# Debug information
|
|
print(f"🔍 传递给predictor的数据列: {x_df.columns.tolist()}")
|
|
print(f"🔍 数据形状: {x_df.shape}")
|
|
print(f"🔍 数据样例:")
|
|
print(x_df.head(2))
|
|
|
|
# Ensure timestamps are Series format, not DatetimeIndex, to avoid .dt attribute error in Kronos model
|
|
if isinstance(x_timestamp, pd.DatetimeIndex):
|
|
x_timestamp = pd.Series(x_timestamp, name='timestamps')
|
|
if isinstance(y_timestamp, pd.DatetimeIndex):
|
|
y_timestamp = pd.Series(y_timestamp, name='timestamps')
|
|
|
|
pred_df = predictor.predict(
|
|
df=x_df,
|
|
x_timestamp=x_timestamp,
|
|
y_timestamp=y_timestamp,
|
|
pred_len=pred_len,
|
|
T=temperature,
|
|
top_p=top_p,
|
|
sample_count=sample_count
|
|
)
|
|
|
|
except Exception as e:
|
|
return jsonify({'error': f'Kronos model prediction failed: {str(e)}'}), 500
|
|
else:
|
|
return jsonify({'error': 'Kronos model not loaded, please load model first'}), 400
|
|
|
|
# Prepare actual data for comparison (if exists)
|
|
actual_data = []
|
|
actual_df = None
|
|
|
|
if start_date: # Custom time period
|
|
# Fix logic: use data within selected window
|
|
# Prediction uses first 400 data points within selected window
|
|
# Actual data should be last 120 data points within selected window
|
|
start_dt = pd.to_datetime(start_date)
|
|
|
|
# Find data starting from start_date
|
|
mask = df['timestamps'] >= start_dt
|
|
time_range_df = df[mask]
|
|
|
|
if len(time_range_df) >= lookback + pred_len:
|
|
# Get last 120 data points within selected window as actual values
|
|
actual_df = time_range_df.iloc[lookback:lookback + pred_len]
|
|
|
|
for i, (_, row) in enumerate(actual_df.iterrows()):
|
|
actual_data.append({
|
|
'timestamp': row['timestamps'].isoformat(),
|
|
'open': float(row['open']),
|
|
'high': float(row['high']),
|
|
'low': float(row['low']),
|
|
'close': float(row['close']),
|
|
'volume': float(row['volume']) if 'volume' in row else 0,
|
|
'amount': float(row['amount']) if 'amount' in row else 0
|
|
})
|
|
else: # Latest data
|
|
# Prediction uses first 400 data points
|
|
# Actual data should be 120 data points after first 400 data points
|
|
if len(df) >= lookback + pred_len:
|
|
actual_df = df.iloc[lookback:lookback + pred_len]
|
|
for i, (_, row) in enumerate(actual_df.iterrows()):
|
|
actual_data.append({
|
|
'timestamp': row['timestamps'].isoformat(),
|
|
'open': float(row['open']),
|
|
'high': float(row['high']),
|
|
'low': float(row['low']),
|
|
'close': float(row['close']),
|
|
'volume': float(row['volume']) if 'volume' in row else 0,
|
|
'amount': float(row['amount']) if 'amount' in row else 0
|
|
})
|
|
|
|
# Create chart - pass historical data start position
|
|
if start_date:
|
|
# Custom time period: find starting position of historical data in original df
|
|
start_dt = pd.to_datetime(start_date)
|
|
mask = df['timestamps'] >= start_dt
|
|
historical_start_idx = df[mask].index[0] if len(df[mask]) > 0 else 0
|
|
else:
|
|
# Latest data: start from beginning
|
|
historical_start_idx = 0
|
|
|
|
chart_json = create_prediction_chart(df, pred_df, lookback, pred_len, actual_df, historical_start_idx)
|
|
|
|
# Prepare prediction result data - fix timestamp calculation logic
|
|
if 'timestamps' in df.columns:
|
|
if start_date:
|
|
# Custom time period: use selected window data to calculate timestamps
|
|
start_dt = pd.to_datetime(start_date)
|
|
mask = df['timestamps'] >= start_dt
|
|
time_range_df = df[mask]
|
|
|
|
if len(time_range_df) >= lookback:
|
|
# Calculate prediction timestamps starting from last time point of selected window
|
|
last_timestamp = time_range_df['timestamps'].iloc[lookback - 1]
|
|
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0]
|
|
future_timestamps = pd.date_range(
|
|
start=last_timestamp + time_diff,
|
|
periods=pred_len,
|
|
freq=time_diff
|
|
)
|
|
else:
|
|
future_timestamps = []
|
|
else:
|
|
# Latest data: calculate from last time point of entire data file
|
|
last_timestamp = df['timestamps'].iloc[-1]
|
|
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0]
|
|
future_timestamps = pd.date_range(
|
|
start=last_timestamp + time_diff,
|
|
periods=pred_len,
|
|
freq=time_diff
|
|
)
|
|
else:
|
|
future_timestamps = range(len(df), len(df) + pred_len)
|
|
|
|
prediction_results = []
|
|
for i, (_, row) in enumerate(pred_df.iterrows()):
|
|
prediction_results.append({
|
|
'timestamp': future_timestamps[i].isoformat() if i < len(future_timestamps) else f"T{i}",
|
|
'open': float(row['open']),
|
|
'high': float(row['high']),
|
|
'low': float(row['low']),
|
|
'close': float(row['close']),
|
|
'volume': float(row['volume']) if 'volume' in row else 0,
|
|
'amount': float(row['amount']) if 'amount' in row else 0
|
|
})
|
|
|
|
# Save prediction results to file
|
|
try:
|
|
save_prediction_results(
|
|
file_path=file_path,
|
|
prediction_type=prediction_type,
|
|
prediction_results=prediction_results,
|
|
actual_data=actual_data,
|
|
input_data=x_df,
|
|
prediction_params={
|
|
'lookback': lookback,
|
|
'pred_len': pred_len,
|
|
'temperature': temperature,
|
|
'top_p': top_p,
|
|
'sample_count': sample_count,
|
|
'start_date': start_date if start_date else 'latest'
|
|
}
|
|
)
|
|
except Exception as e:
|
|
print(f"Failed to save prediction results: {e}")
|
|
|
|
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
# 在返回前添加
|
|
print(f"✅ 预测完成,返回数据:")
|
|
print(f" 成功: {True}")
|
|
print(f" 预测类型: {prediction_type}")
|
|
print(f" 图表数据长度: {len(chart_json)}")
|
|
print(f" 预测结果数量: {len(prediction_results)}")
|
|
print(f" 实际数据数量: {len(actual_data)}")
|
|
print(f" 有比较数据: {len(actual_data) > 0}")
|
|
|
|
return jsonify({
|
|
'success': True,
|
|
'prediction_type': prediction_type,
|
|
'chart': chart_json,
|
|
'prediction_results': prediction_results,
|
|
'actual_data': actual_data,
|
|
'has_comparison': len(actual_data) > 0,
|
|
'message': f'Prediction completed, generated {pred_len} prediction points' + (
|
|
f', including {len(actual_data)} actual data points for comparison' if len(actual_data) > 0 else '')
|
|
})
|
|
|
|
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
# return jsonify({
|
|
# 'success': True,
|
|
# 'prediction_type': prediction_type,
|
|
# 'chart': chart_json,
|
|
# 'prediction_results': prediction_results,
|
|
# 'actual_data': actual_data,
|
|
# 'has_comparison': len(actual_data) > 0,
|
|
# 'message': f'Prediction completed, generated {pred_len} prediction points' + (
|
|
# f', including {len(actual_data)} actual data points for comparison' if len(actual_data) > 0 else '')
|
|
# })
|
|
|
|
except Exception as e:
|
|
return jsonify({'error': f'Prediction failed: {str(e)}'}), 500
|
|
|
|
# @app.route('/api/load-model', methods=['POST'])
|
|
# def load_model():
|
|
# """Load Kronos model"""
|
|
# global tokenizer, model, predictor
|
|
#
|
|
# try:
|
|
# if not MODEL_AVAILABLE:
|
|
# return jsonify({'error': 'Kronos model library not available'}), 400
|
|
#
|
|
# data = request.get_json()
|
|
# model_key = data.get('model_key', 'kronos-small')
|
|
# device = data.get('device', 'cpu')
|
|
#
|
|
# if model_key not in AVAILABLE_MODELS:
|
|
# return jsonify({'error': f'Unsupported model: {model_key}'}), 400
|
|
#
|
|
# model_config = AVAILABLE_MODELS[model_key]
|
|
#
|
|
# # Load tokenizer and model
|
|
# tokenizer = KronosTokenizer.from_pretrained(model_config['tokenizer_id'])
|
|
# model = Kronos.from_pretrained(model_config['model_id'])
|
|
#
|
|
# # Create predictor
|
|
# predictor = KronosPredictor(model, tokenizer, device=device, max_context=model_config['context_length'])
|
|
#
|
|
# return jsonify({
|
|
# 'success': True,
|
|
# 'message': f'Model loaded successfully: {model_config["name"]} ({model_config["params"]}) on {device}',
|
|
# 'model_info': {
|
|
# 'name': model_config['name'],
|
|
# 'params': model_config['params'],
|
|
# 'context_length': model_config['context_length'],
|
|
# 'description': model_config['description']
|
|
# }
|
|
# })
|
|
#
|
|
# except Exception as e:
|
|
# return jsonify({'error': f'Model loading failed: {str(e)}'}), 500
|
|
|
|
|
|
@app.route('/api/load-model', methods=['POST'])
|
|
def load_model():
|
|
global tokenizer, model, predictor
|
|
|
|
try:
|
|
if not MODEL_AVAILABLE:
|
|
return jsonify({'error': 'Kronos model library not available'}), 400
|
|
|
|
data = request.get_json()
|
|
model_key = data.get('model_key', 'kronos-small')
|
|
device = data.get('device', 'cpu')
|
|
|
|
if model_key not in AVAILABLE_MODELS:
|
|
return jsonify({'error': f'Unsupported model: {model_key}'}), 400
|
|
|
|
model_config = AVAILABLE_MODELS[model_key]
|
|
|
|
print(f"Loading model from: {model_config['model_id']}")
|
|
|
|
# 检查模型路径是否存在
|
|
if not os.path.exists(model_config['model_id']):
|
|
return jsonify({'error': f'Model path does not exist: {model_config["model_id"]}'}), 400
|
|
|
|
try:
|
|
# 直接从本地加载模型
|
|
model = Kronos.from_pretrained(
|
|
model_config['model_id'],
|
|
local_files_only=True
|
|
)
|
|
|
|
# 读取模型配置文件获取正确参数
|
|
config_path = os.path.join(model_config['model_id'], 'config.json')
|
|
if os.path.exists(config_path):
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
|
|
print("使用模型配置参数:", config)
|
|
|
|
# 使用配置中的参数创建tokenizer
|
|
tokenizer = KronosTokenizer(
|
|
d_in=6, # OHLC + volume
|
|
d_model=config['d_model'], # 832
|
|
n_heads=config['n_heads'], # 16
|
|
ff_dim=config['ff_dim'], # 2048
|
|
n_enc_layers=config['n_layers'], # 12
|
|
n_dec_layers=config['n_layers'], # 12
|
|
ffn_dropout_p=config['ffn_dropout_p'], # 0.2
|
|
attn_dropout_p=config['attn_dropout_p'], # 0.0
|
|
resid_dropout_p=config['resid_dropout_p'], # 0.2
|
|
s1_bits=config['s1_bits'], # 10
|
|
s2_bits=config['s2_bits'], # 10
|
|
beta=1.0,
|
|
gamma0=1.0,
|
|
gamma=1.0,
|
|
zeta=1.0,
|
|
group_size=1
|
|
)
|
|
else:
|
|
return jsonify({'error': f'Config file not found: {config_path}'}), 400
|
|
|
|
except Exception as e:
|
|
return jsonify({'error': f'Failed to load model: {str(e)}'}), 500
|
|
|
|
# 创建predictor
|
|
predictor = KronosPredictor(
|
|
model,
|
|
tokenizer,
|
|
device=device,
|
|
max_context=model_config['context_length']
|
|
)
|
|
|
|
return jsonify({
|
|
'success': True,
|
|
'message': f'Model loaded successfully: {model_config["name"]} ({model_config["params"]}) on {device}',
|
|
'model_info': model_config
|
|
})
|
|
|
|
except Exception as e:
|
|
return jsonify({'error': f'Model loading failed: {str(e)}'}), 500
|
|
|
|
|
|
@app.route('/api/available-models')
|
|
def get_available_models():
|
|
"""Get available model list"""
|
|
return jsonify({
|
|
'models': AVAILABLE_MODELS,
|
|
'model_available': MODEL_AVAILABLE
|
|
})
|
|
|
|
|
|
@app.route('/api/model-status')
|
|
def get_model_status():
|
|
"""Get model status"""
|
|
if MODEL_AVAILABLE:
|
|
if predictor is not None:
|
|
return jsonify({
|
|
'available': True,
|
|
'loaded': True,
|
|
'message': 'Kronos model loaded and available',
|
|
'current_model': {
|
|
'name': predictor.model.__class__.__name__,
|
|
'device': str(next(predictor.model.parameters()).device)
|
|
}
|
|
})
|
|
else:
|
|
return jsonify({
|
|
'available': True,
|
|
'loaded': False,
|
|
'message': 'Kronos model available but not loaded'
|
|
})
|
|
else:
|
|
return jsonify({
|
|
'available': False,
|
|
'loaded': False,
|
|
'message': 'Kronos model library not available, please install related dependencies'
|
|
})
|
|
|
|
|
|
@app.route('/api/stock-data', methods=['POST'])
|
|
def Stock_Data():
|
|
try:
|
|
data = request.get_json()
|
|
stock_code = data.get('stock_code', '').strip()
|
|
|
|
# 股票代码不能为空
|
|
if not stock_code:
|
|
return jsonify({
|
|
'success': False,
|
|
'error': f'Stock code cannot be empty'
|
|
}), 400
|
|
|
|
# 股票代码格式验证
|
|
if not re.match(r'^[a-z]+\.\d+$', stock_code):
|
|
return jsonify({
|
|
'success': False,
|
|
'error': f'The stock code you entered is invalid'
|
|
}), 400
|
|
|
|
# 登录 baostock
|
|
lg = bs.login()
|
|
|
|
if lg.error_code != '0':
|
|
return jsonify({
|
|
'success': False,
|
|
'error': f'Login failed: {lg.error_msg}'
|
|
}), 400
|
|
|
|
rs = bs.query_history_k_data_plus(
|
|
stock_code,
|
|
"time,open,high,low,close,volume,amount",
|
|
start_date = '2024-06-01',
|
|
end_date = '2024-10-31',
|
|
frequency = "5",
|
|
adjustflag = "3"
|
|
)
|
|
|
|
# 检查获取结果
|
|
if rs.error_code != '0':
|
|
bs.logout()
|
|
return jsonify({
|
|
'success': False,
|
|
'error': f'Failed to retrieve data, please enter a valid stock code'
|
|
}), 400
|
|
|
|
# 提取数据
|
|
data_list = []
|
|
while rs.next():
|
|
data_list.append(rs.get_row_data())
|
|
|
|
# 登出系统
|
|
bs.logout()
|
|
|
|
columns = rs.fields
|
|
df = pd.DataFrame(data_list, columns=columns)
|
|
|
|
# 数值列转换
|
|
df = df.rename(columns={'time': 'timestamps'})
|
|
|
|
numeric_columns = ['timestamps','open', 'high', 'low', 'close', 'volume', 'amount']
|
|
for col in numeric_columns:
|
|
df[col] = pd.to_numeric(df[col], errors='coerce')
|
|
|
|
df['timestamps'] = pd.to_datetime(df['timestamps'].astype(str), format='%Y%m%d%H%M%S%f')
|
|
|
|
# 去除无效数据
|
|
df = df.dropna()
|
|
|
|
# 保存
|
|
data_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'data')
|
|
os.makedirs(data_dir, exist_ok=True)
|
|
|
|
filename = f"Stock_5min_A股.csv"
|
|
file_path = os.path.join(data_dir, filename)
|
|
|
|
df.to_csv(
|
|
file_path,
|
|
index = False,
|
|
encoding = 'utf-8',
|
|
mode = 'w'
|
|
)
|
|
|
|
data_files = load_data_files()
|
|
|
|
return jsonify({
|
|
'success': True,
|
|
'message': f'Stock data saved successfully: {filename}',
|
|
'file_name': filename
|
|
})
|
|
|
|
except Exception as e:
|
|
return jsonify({
|
|
'success': False,
|
|
'error': f'Error processing stock data: {str(e)}'
|
|
}), 500
|
|
|
|
|
|
@app.route('/api/generate-chart', methods=['POST'])
|
|
def generate_chart():
|
|
try:
|
|
data = request.get_json()
|
|
|
|
# 验证参数
|
|
required_fields = ['file_path', 'lookback', 'diagram_type', 'historical_start_idx']
|
|
for field in required_fields:
|
|
if field not in data:
|
|
return jsonify({'success': False, 'error': f'Missing required field: {field}'}), 400
|
|
|
|
# 解析参数
|
|
file_path = data['file_path']
|
|
lookback = int(data['lookback'])
|
|
diagram_type = data['diagram_type']
|
|
historical_start_idx = int(data['historical_start_idx'])
|
|
|
|
# 加载数据
|
|
df, error = load_data_file(file_path)
|
|
if error:
|
|
return jsonify({'success': False, 'error': error}), 400
|
|
|
|
if len(df) < lookback + historical_start_idx:
|
|
return jsonify({
|
|
'success': False,
|
|
'error': f'Insufficient data length, need at least {lookback + historical_start_idx} rows'
|
|
}), 400
|
|
|
|
pred_df = None
|
|
actual_df = None
|
|
|
|
# 生成图表
|
|
chart_json = create_technical_chart(
|
|
df=df,
|
|
pred_df=pred_df,
|
|
lookback=lookback,
|
|
pred_len=0,
|
|
diagram_type=diagram_type,
|
|
actual_df=actual_df,
|
|
historical_start_idx=historical_start_idx
|
|
)
|
|
|
|
# 表格数据
|
|
table_data_start = historical_start_idx
|
|
table_data_end = historical_start_idx + lookback
|
|
table_df = df.iloc[table_data_start:table_data_end]
|
|
table_data = table_df.to_dict('records')
|
|
|
|
return jsonify({
|
|
'success': True,
|
|
'chart': json.loads(chart_json),
|
|
'table_data': table_data,
|
|
'message': 'Technical chart generated successfully'
|
|
})
|
|
|
|
except Exception as e:
|
|
return jsonify({
|
|
'success': False,
|
|
'error': f'Failed to generate technical chart: {str(e)}'
|
|
}), 500
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print("Starting Kronos Web UI...")
|
|
print(f"Model availability: {MODEL_AVAILABLE}")
|
|
if MODEL_AVAILABLE:
|
|
print("Tip: You can load Kronos model through /api/load-model endpoint")
|
|
else:
|
|
print("Tip: Will use simulated data for demonstration")
|
|
|
|
app.run(debug=True, host='0.0.0.0', port=7070)
|