You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
364 lines
12 KiB
364 lines
12 KiB
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const {
|
|
LLMPerformanceMonitor,
|
|
} = require("../../helpers/chat/LLMPerformanceMonitor");
|
|
const {
|
|
formatChatHistory,
|
|
writeResponseChunk,
|
|
clientAbortedHandler,
|
|
} = require("../../helpers/chat/responses");
|
|
const { toValidNumber } = require("../../http");
|
|
|
|
class GenericOpenAiLLM {
|
|
constructor(embedder = null, modelPreference = null) {
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
if (!process.env.GENERIC_OPEN_AI_BASE_PATH)
|
|
throw new Error(
|
|
"GenericOpenAI must have a valid base path to use for the api."
|
|
);
|
|
|
|
this.basePath = process.env.GENERIC_OPEN_AI_BASE_PATH;
|
|
this.openai = new OpenAIApi({
|
|
baseURL: this.basePath,
|
|
apiKey: process.env.GENERIC_OPEN_AI_API_KEY ?? null,
|
|
});
|
|
this.model =
|
|
modelPreference ?? process.env.GENERIC_OPEN_AI_MODEL_PREF ?? null;
|
|
this.maxTokens = process.env.GENERIC_OPEN_AI_MAX_TOKENS
|
|
? toValidNumber(process.env.GENERIC_OPEN_AI_MAX_TOKENS, 1024)
|
|
: 1024;
|
|
if (!this.model)
|
|
throw new Error("GenericOpenAI must have a valid model set.");
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
|
this.defaultTemp = 0.7;
|
|
this.log(`Inference API: ${this.basePath} Model: ${this.model}`);
|
|
}
|
|
|
|
log(text, ...args) {
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
static promptWindowLimit(_modelName) {
|
|
const limit = process.env.GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT || 4096;
|
|
if (!limit || isNaN(Number(limit)))
|
|
throw new Error("No token context limit was set.");
|
|
return Number(limit);
|
|
}
|
|
|
|
// Ensure the user set a value for the token limit
|
|
// and if undefined - assume 4096 window.
|
|
promptWindowLimit() {
|
|
const limit = process.env.GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT || 4096;
|
|
if (!limit || isNaN(Number(limit)))
|
|
throw new Error("No token context limit was set.");
|
|
return Number(limit);
|
|
}
|
|
|
|
// Short circuit since we have no idea if the model is valid or not
|
|
// in pre-flight for generic endpoints
|
|
isValidChatCompletionModel(_modelName = "") {
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Generates appropriate content array for a message + attachments.
|
|
*
|
|
* ## Developer Note
|
|
* This function assumes the generic OpenAI provider is _actually_ OpenAI compatible.
|
|
* For example, Ollama is "OpenAI compatible" but does not support images as a content array.
|
|
* The contentString also is the base64 string WITH `data:image/xxx;base64,` prefix, which may not be the case for all providers.
|
|
* If your provider does not work exactly this way, then attachments will not function or potentially break vision requests.
|
|
* If you encounter this issue, you are welcome to open an issue asking for your specific provider to be supported.
|
|
*
|
|
* This function will **not** be updated for providers that **do not** support images as a content array like OpenAI does.
|
|
* Do not open issues to update this function due to your specific provider not being compatible. Open an issue to request support for your specific provider.
|
|
* @param {Object} props
|
|
* @param {string} props.userPrompt - the user prompt to be sent to the model
|
|
* @param {import("../../helpers").Attachment[]} props.attachments - the array of attachments to be sent to the model
|
|
* @returns {string|object[]}
|
|
*/
|
|
#generateContent({ userPrompt, attachments = [] }) {
|
|
if (!attachments.length) {
|
|
return userPrompt;
|
|
}
|
|
|
|
const content = [{ type: "text", text: userPrompt }];
|
|
for (let attachment of attachments) {
|
|
content.push({
|
|
type: "image_url",
|
|
image_url: {
|
|
url: attachment.contentString,
|
|
detail: "high",
|
|
},
|
|
});
|
|
}
|
|
return content.flat();
|
|
}
|
|
|
|
/**
|
|
* Construct the user prompt for this model.
|
|
* @param {{attachments: import("../../helpers").Attachment[]}} param0
|
|
* @returns
|
|
*/
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
attachments = [],
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [
|
|
prompt,
|
|
...formatChatHistory(chatHistory, this.#generateContent),
|
|
{
|
|
role: "user",
|
|
content: this.#generateContent({ userPrompt, attachments }),
|
|
},
|
|
];
|
|
}
|
|
|
|
/**
|
|
* Parses and prepends reasoning from the response and returns the full text response.
|
|
* @param {Object} response
|
|
* @returns {string}
|
|
*/
|
|
#parseReasoningFromResponse({ message }) {
|
|
let textResponse = message?.content;
|
|
if (
|
|
!!message?.reasoning_content &&
|
|
message.reasoning_content.trim().length > 0
|
|
)
|
|
textResponse = `<think>${message.reasoning_content}</think>${textResponse}`;
|
|
return textResponse;
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
const result = await LLMPerformanceMonitor.measureAsyncFunction(
|
|
this.openai.chat.completions
|
|
.create({
|
|
model: this.model,
|
|
messages,
|
|
temperature,
|
|
max_tokens: this.maxTokens,
|
|
})
|
|
.catch((e) => {
|
|
throw new Error(e.message);
|
|
})
|
|
);
|
|
|
|
if (
|
|
!result.output.hasOwnProperty("choices") ||
|
|
result.output.choices.length === 0
|
|
)
|
|
return null;
|
|
|
|
return {
|
|
textResponse: this.#parseReasoningFromResponse(result.output.choices[0]),
|
|
metrics: {
|
|
prompt_tokens: result.output?.usage?.prompt_tokens || 0,
|
|
completion_tokens: result.output?.usage?.completion_tokens || 0,
|
|
total_tokens: result.output?.usage?.total_tokens || 0,
|
|
outputTps:
|
|
(result.output?.usage?.completion_tokens || 0) / result.duration,
|
|
duration: result.duration,
|
|
},
|
|
};
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
|
|
this.openai.chat.completions.create({
|
|
model: this.model,
|
|
stream: true,
|
|
messages,
|
|
temperature,
|
|
max_tokens: this.maxTokens,
|
|
}),
|
|
messages
|
|
// runPromptTokenCalculation: true - There is not way to know if the generic provider connected is returning
|
|
// the correct usage metrics if any at all since any provider could be connected.
|
|
);
|
|
return measuredStreamRequest;
|
|
}
|
|
|
|
// TODO: This is a copy of the generic handleStream function in responses.js
|
|
// to specifically handle the DeepSeek reasoning model `reasoning_content` field.
|
|
// When or if ever possible, we should refactor this to be in the generic function.
|
|
handleStream(response, stream, responseProps) {
|
|
const { uuid = uuidv4(), sources = [] } = responseProps;
|
|
let hasUsageMetrics = false;
|
|
let usage = {
|
|
completion_tokens: 0,
|
|
};
|
|
|
|
return new Promise(async (resolve) => {
|
|
let fullText = "";
|
|
let reasoningText = "";
|
|
|
|
// Establish listener to early-abort a streaming response
|
|
// in case things go sideways or the user does not like the response.
|
|
// We preserve the generated text but continue as if chat was completed
|
|
// to preserve previously generated content.
|
|
const handleAbort = () => {
|
|
stream?.endMeasurement(usage);
|
|
clientAbortedHandler(resolve, fullText);
|
|
};
|
|
response.on("close", handleAbort);
|
|
|
|
try {
|
|
for await (const chunk of stream) {
|
|
const message = chunk?.choices?.[0];
|
|
const token = message?.delta?.content;
|
|
const reasoningToken = message?.delta?.reasoning_content;
|
|
|
|
if (
|
|
chunk.hasOwnProperty("usage") && // exists
|
|
!!chunk.usage && // is not null
|
|
Object.values(chunk.usage).length > 0 // has values
|
|
) {
|
|
if (chunk.usage.hasOwnProperty("prompt_tokens")) {
|
|
usage.prompt_tokens = Number(chunk.usage.prompt_tokens);
|
|
}
|
|
|
|
if (chunk.usage.hasOwnProperty("completion_tokens")) {
|
|
hasUsageMetrics = true; // to stop estimating counter
|
|
usage.completion_tokens = Number(chunk.usage.completion_tokens);
|
|
}
|
|
}
|
|
|
|
// Reasoning models will always return the reasoning text before the token text.
|
|
if (reasoningToken) {
|
|
// If the reasoning text is empty (''), we need to initialize it
|
|
// and send the first chunk of reasoning text.
|
|
if (reasoningText.length === 0) {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: `<think>${reasoningToken}`,
|
|
close: false,
|
|
error: false,
|
|
});
|
|
reasoningText += `<think>${reasoningToken}`;
|
|
continue;
|
|
} else {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: reasoningToken,
|
|
close: false,
|
|
error: false,
|
|
});
|
|
reasoningText += reasoningToken;
|
|
}
|
|
}
|
|
|
|
// If the reasoning text is not empty, but the reasoning token is empty
|
|
// and the token text is not empty we need to close the reasoning text and begin sending the token text.
|
|
if (!!reasoningText && !reasoningToken && token) {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: `</think>`,
|
|
close: false,
|
|
error: false,
|
|
});
|
|
fullText += `${reasoningText}</think>`;
|
|
reasoningText = "";
|
|
}
|
|
|
|
if (token) {
|
|
fullText += token;
|
|
// If we never saw a usage metric, we can estimate them by number of completion chunks
|
|
if (!hasUsageMetrics) usage.completion_tokens++;
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: token,
|
|
close: false,
|
|
error: false,
|
|
});
|
|
}
|
|
|
|
if (
|
|
message?.hasOwnProperty("finish_reason") && // Got valid message and it is an object with finish_reason
|
|
message.finish_reason !== "" &&
|
|
message.finish_reason !== null
|
|
) {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources,
|
|
type: "textResponseChunk",
|
|
textResponse: "",
|
|
close: true,
|
|
error: false,
|
|
});
|
|
response.removeListener("close", handleAbort);
|
|
stream?.endMeasurement(usage);
|
|
resolve(fullText);
|
|
break; // Break streaming when a valid finish_reason is first encountered
|
|
}
|
|
}
|
|
} catch (e) {
|
|
console.log(`\x1b[43m\x1b[34m[STREAMING ERROR]\x1b[0m ${e.message}`);
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
type: "abort",
|
|
textResponse: null,
|
|
sources: [],
|
|
close: true,
|
|
error: e.message,
|
|
});
|
|
stream?.endMeasurement(usage);
|
|
resolve(fullText);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
GenericOpenAiLLM,
|
|
};
|