|
|
const { v4: uuidv4 } = require("uuid");const moment = require("moment");
function clientAbortedHandler(resolve, fullText) { console.log( "\x1b[43m\x1b[34m[STREAM ABORTED]\x1b[0m Client requested to abort stream. Exiting LLM stream handler early." ); resolve(fullText); return;}
/** * Handles the default stream response for a chat. * @param {import("express").Response} response * @param {import('./LLMPerformanceMonitor').MonitoredStream} stream * @param {Object} responseProps * @returns {Promise<string>} */function handleDefaultStreamResponseV2(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps;
// Why are we doing this?
// OpenAI do enable the usage metrics in the stream response but:
// 1. This parameter is not available in our current API version (TODO: update)
// 2. The usage metrics are not available in _every_ provider that uses this function
// 3. We need to track the usage metrics for every provider that uses this function - not just OpenAI
// Other keys are added by the LLMPerformanceMonitor.measureStream method
let hasUsageMetrics = false; let usage = { // prompt_tokens can be in this object if the provider supports it - otherwise we manually count it
// When the stream is created in the LLMProviders `streamGetChatCompletion` `LLMPerformanceMonitor.measureStream` call.
completion_tokens: 0, };
return new Promise(async (resolve) => { let fullText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => { stream?.endMeasurement(usage); clientAbortedHandler(resolve, fullText); }; response.on("close", handleAbort);
// Now handle the chunks from the streamed response and append to fullText.
try { for await (const chunk of stream) { const message = chunk?.choices?.[0]; const token = message?.delta?.content;
// If we see usage metrics in the chunk, we can use them directly
// instead of estimating them, but we only want to assign values if
// the response object is the exact same key:value pair we expect.
if ( chunk.hasOwnProperty("usage") && // exists
!!chunk.usage && // is not null
Object.values(chunk.usage).length > 0 // has values
) { if (chunk.usage.hasOwnProperty("prompt_tokens")) { usage.prompt_tokens = Number(chunk.usage.prompt_tokens); }
if (chunk.usage.hasOwnProperty("completion_tokens")) { hasUsageMetrics = true; // to stop estimating counter
usage.completion_tokens = Number(chunk.usage.completion_tokens); } }
if (token) { fullText += token; // If we never saw a usage metric, we can estimate them by number of completion chunks
if (!hasUsageMetrics) usage.completion_tokens++; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: token, close: false, error: false, }); }
// LocalAi returns '' and others return null on chunks - the last chunk is not "" or null.
// Either way, the key `finish_reason` must be present to determine ending chunk.
if ( message?.hasOwnProperty("finish_reason") && // Got valid message and it is an object with finish_reason
message.finish_reason !== "" && message.finish_reason !== null ) { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); response.removeListener("close", handleAbort); stream?.endMeasurement(usage); resolve(fullText); break; // Break streaming when a valid finish_reason is first encountered
} } } catch (e) { console.log(`\x1b[43m\x1b[34m[STREAMING ERROR]\x1b[0m ${e.message}`); writeResponseChunk(response, { uuid, type: "abort", textResponse: null, sources: [], close: true, error: e.message, }); stream?.endMeasurement(usage); resolve(fullText); // Return what we currently have - if anything.
} });}
function convertToChatHistory(history = []) { const formattedHistory = []; for (const record of history) { const { prompt, response, createdAt, feedbackScore = null, id } = record; const data = JSON.parse(response);
// In the event that a bad response was stored - we should skip its entire record
// because it was likely an error and cannot be used in chats and will fail to render on UI.
if (typeof prompt !== "string") { console.log( `[convertToChatHistory] ChatHistory #${record.id} prompt property is not a string - skipping record.` ); continue; } else if (typeof data.text !== "string") { console.log( `[convertToChatHistory] ChatHistory #${record.id} response.text property is not a string - skipping record.` ); continue; }
formattedHistory.push([ { role: "user", content: prompt, sentAt: moment(createdAt).unix(), attachments: data?.attachments ?? [], chatId: id, }, { type: data?.type || "chart", role: "assistant", content: data.text, sources: data.sources || [], chatId: id, sentAt: moment(createdAt).unix(), feedbackScore, metrics: data?.metrics || {}, }, ]); }
return formattedHistory.flat();}
/** * Converts a chat history to a prompt history. * @param {Object[]} history - The chat history to convert * @returns {{role: string, content: string, attachments?: import("..").Attachment}[]} */function convertToPromptHistory(history = []) { const formattedHistory = []; for (const record of history) { const { prompt, response } = record; const data = JSON.parse(response);
// In the event that a bad response was stored - we should skip its entire record
// because it was likely an error and cannot be used in chats and will fail to render on UI.
if (typeof prompt !== "string") { console.log( `[convertToPromptHistory] ChatHistory #${record.id} prompt property is not a string - skipping record.` ); continue; } else if (typeof data.text !== "string") { console.log( `[convertToPromptHistory] ChatHistory #${record.id} response.text property is not a string - skipping record.` ); continue; }
formattedHistory.push([ { role: "user", content: prompt, // if there are attachments, add them as a property to the user message so we can reuse them in chat history later if supported by the llm.
...(data?.attachments?.length > 0 ? { attachments: data?.attachments } : {}), }, { role: "assistant", content: data.text, }, ]); } return formattedHistory.flat();}
function writeResponseChunk(response, data) { response.write(`data: ${JSON.stringify(data)}\n\n`); return;}
/** * Formats the chat history to re-use attachments in the chat history * that might have existed in the conversation earlier. * @param {{role:string, content:string, attachments?: Object[]}[]} chatHistory * @param {function} formatterFunction - The function to format the chat history from the llm provider * @param {('asProperty'|'spread')} mode - "asProperty" or "spread". Determines how the content is formatted in the message object. * @returns {object[]} */function formatChatHistory( chatHistory = [], formatterFunction, mode = "asProperty") { return chatHistory.map((historicalMessage) => { if ( historicalMessage?.role !== "user" || // Only user messages can have attachments
!historicalMessage?.attachments || // If there are no attachments, we can skip this
!historicalMessage.attachments.length // If there is an array but it is empty, we can skip this
) return historicalMessage;
// Some providers, like Ollama, expect the content to be embedded in the message object.
if (mode === "spread") { return { role: historicalMessage.role, ...formatterFunction({ userPrompt: historicalMessage.content, attachments: historicalMessage.attachments, }), }; }
// Most providers expect the content to be a property of the message object formatted like OpenAI models.
return { role: historicalMessage.role, content: formatterFunction({ userPrompt: historicalMessage.content, attachments: historicalMessage.attachments, }), }; });}
module.exports = { handleDefaultStreamResponseV2, convertToChatHistory, convertToPromptHistory, writeResponseChunk, clientAbortedHandler, formatChatHistory,};
|