|
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");const { LLMPerformanceMonitor,} = require("../../helpers/chat/LLMPerformanceMonitor");const { handleDefaultStreamResponseV2,} = require("../../helpers/chat/responses");
function fireworksAiModels() { const { MODELS } = require("./models.js"); return MODELS || {};}
class FireworksAiLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.FIREWORKS_AI_LLM_API_KEY) throw new Error("No FireworksAI API key was set."); const { OpenAI: OpenAIApi } = require("openai"); this.openai = new OpenAIApi({ baseURL: "https://api.fireworks.ai/inference/v1", apiKey: process.env.FIREWORKS_AI_LLM_API_KEY ?? null, }); this.model = modelPreference || process.env.FIREWORKS_AI_LLM_MODEL_PREF; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, };
this.embedder = !embedder ? new NativeEmbedder() : embedder; this.defaultTemp = 0.7; }
#appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); }
allModelInformation() { return fireworksAiModels(); }
streamingEnabled() { return "streamGetChatCompletion" in this; }
static promptWindowLimit(modelName) { const availableModels = fireworksAiModels(); return availableModels[modelName]?.maxLength || 4096; }
// Ensure the user set a value for the token limit
// and if undefined - assume 4096 window.
promptWindowLimit() { const availableModels = this.allModelInformation(); return availableModels[this.model]?.maxLength || 4096; }
async isValidChatCompletionModel(model = "") { const availableModels = this.allModelInformation(); return availableModels.hasOwnProperty(model); }
constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [prompt, ...chatHistory, { role: "user", content: userPrompt }]; }
async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `FireworksAI chat: ${this.model} is not valid for chat completion!` );
const result = await LLMPerformanceMonitor.measureAsyncFunction( this.openai.chat.completions.create({ model: this.model, messages, temperature, }) );
if ( !result.output.hasOwnProperty("choices") || result.output.choices.length === 0 ) return null;
return { textResponse: result.output.choices[0].message.content, metrics: { prompt_tokens: result.output.usage.prompt_tokens || 0, completion_tokens: result.output.usage.completion_tokens || 0, total_tokens: result.output.usage.total_tokens || 0, outputTps: result.output.usage.completion_tokens / result.duration, duration: result.duration, }, }; }
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `FireworksAI chat: ${this.model} is not valid for chat completion!` );
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream( this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, }), messages, false ); return measuredStreamRequest; }
handleStream(response, stream, responseProps) { return handleDefaultStreamResponseV2(response, stream, responseProps); }
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); }
async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); }}
module.exports = { FireworksAiLLM, fireworksAiModels,};
|