|
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");const { LLMPerformanceMonitor,} = require("../../helpers/chat/LLMPerformanceMonitor");const { handleDefaultStreamResponseV2, formatChatHistory,} = require("../../helpers/chat/responses");
class MistralLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.MISTRAL_API_KEY) throw new Error("No Mistral API key was set.");
const { OpenAI: OpenAIApi } = require("openai"); this.openai = new OpenAIApi({ baseURL: "https://api.mistral.ai/v1", apiKey: process.env.MISTRAL_API_KEY ?? null, }); this.model = modelPreference || process.env.MISTRAL_MODEL_PREF || "mistral-tiny"; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, };
this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.0; this.log("Initialized with model:", this.model); }
log(text, ...args) { console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args); }
#appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); }
streamingEnabled() { return "streamGetChatCompletion" in this; }
static promptWindowLimit() { return 32000; }
promptWindowLimit() { return 32000; }
async isValidChatCompletionModel(modelName = "") { return true; }
/** * Generates appropriate content array for a message + attachments. * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}} * @returns {string|object[]} */ #generateContent({ userPrompt, attachments = [] }) { if (!attachments.length) return userPrompt;
const content = [{ type: "text", text: userPrompt }]; for (let attachment of attachments) { content.push({ type: "image_url", image_url: attachment.contentString, }); } return content.flat(); }
/** * Construct the user prompt for this model. * @param {{attachments: import("../../helpers").Attachment[]}} param0 * @returns */ constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], // This is the specific attachment for only this prompt
}) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [ prompt, ...formatChatHistory(chatHistory, this.#generateContent), { role: "user", content: this.#generateContent({ userPrompt, attachments }), }, ]; }
async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `Mistral chat: ${this.model} is not valid for chat completion!` );
const result = await LLMPerformanceMonitor.measureAsyncFunction( this.openai.chat.completions .create({ model: this.model, messages, temperature, }) .catch((e) => { throw new Error(e.message); }) );
if ( !result.output.hasOwnProperty("choices") || result.output.choices.length === 0 ) return null;
return { textResponse: result.output.choices[0].message.content, metrics: { prompt_tokens: result.output.usage.prompt_tokens || 0, completion_tokens: result.output.usage.completion_tokens || 0, total_tokens: result.output.usage.total_tokens || 0, outputTps: result.output.usage.completion_tokens / result.duration, duration: result.duration, }, }; }
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `Mistral chat: ${this.model} is not valid for chat completion!` );
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream( this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, }), messages, false ); return measuredStreamRequest; }
handleStream(response, stream, responseProps) { return handleDefaultStreamResponseV2(response, stream, responseProps); }
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); }
async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); }}
module.exports = { MistralLLM,};
|